Chem1 (Lower)

Categories: ,

Recommended

Kinetics

Because we cannot directly watch the molecules as they react, the best we can usually do is to infer a reaction mechanism from experimental data, particularly that which relates to the rate of the reaction as it is influenced by the concentrations of the reactants. This entirely experimental area of chemical dynamics is known as kinetics.

Reaction rates, as they are called, vary immensely: some reactions are completed in microseconds, others may take years; many are so slow that their rates are essentially zero. To make things even more interesting, there is no relation between reaction rates and “tendency to react” as governed by the factors in the top half of the above diagram; the latter can be accurately predicted from energetic data on the substances (the properties we mentioned in the previous screen), but reaction rates must be determined by experiment.

Catalysts

Catalysts can make dramatic changes in rates of reactions, especially in those whose un-catalyzed rate is essentially zero. Consider, for example, this rate data on the decomposition of hydrogen peroxide. H O is a by-product of respiration that is poisonous to living cells which have, as a consequence, evolved a highly efficient enzyme (a biological catalyst) that is able to destroy peroxide as quickly as it forms. Catalysts work by enabling a reaction to proceed by an alternative mechanism.

In some reactions, even light can act as a catalyst. For example, the gaseous elements hydrogen and chlorine can remain mixed together in the dark indefinitely without any sign of a reaction, but in the sunlight they combine explosively.

Currents of modern Chemistry

In the preceding section we looked at chemistry from a conceptual standpoint. If this can be considered a “macroscopic” view of chemistry, what is the “microscopic” view? It would likely be what chemists actually do. Because a thorough exploration of this would lead us into far more detail than we can accommodate here, we will mention only a few of the areas that have emerged as being especially important in modern chemistry.

Separation science

A surprisingly large part of chemistry has to do with isolating one component from a mixture. This may occur at any number of stages in a manufacturing process, including the very critical steps involved in removing toxic, odiferous, or otherwise undesirable by-products from a waste stream. But even in the research lab, a considerable amount of effort is often devoted to separating the desired substance from the many components of a reaction mixture, or in separating a component from a complex mixture (for example, a drug metabolite from a urine sample), prior to measuring the amount present.

Categories:,

Attribution

“Book: Chem1 (Lower)” by Stephen Lower, LibreTexts is licensed under CC BY .

VP Flipbook Maker

This flipbook was made by Visual Paradigm Online. You can create your own flipbook by uploading documents. Try this online flipbook creator now!