Intermediate Algebra 2e is designed to meet the scope and sequence requirements of a one-semester intermediate algebra course. The book’s organization makes it easy to adapt to a variety of course syllabi. The text expands on the fundamental concepts of algebra while addressing the needs of students with diverse backgrounds and learning styles. The material is presented as a sequence of clear steps, building on concepts presented in prealgebra and elementary algebra courses.
The second edition contains detailed updates and accuracy revisions to address comments and suggestions from users. Dozens of faculty experts worked through the text, exercises and problems, graphics, and solutions to identify areas needing improvement. Though the authors made significant changes and enhancements, exercise and problem numbers remain nearly the same in order to ensure a smooth transition for faculty. The first edition of Intermediate Algebra by OpenStax is available in web view here.
Introduction
For years, doctors and engineers have worked to make artificial limbs, such as this hand for people who need them. This particular product is different, however, because it was developed using a 3D printer. As a result, it can be printed much like you print words on a sheet of paper. This makes producing the limb less expensive and faster than conventional methods.
Biomedical engineers are working to develop organs that may one day save lives. Scientists at NASA are designing ways to use 3D printers to build on the moon or Mars. Already, animals are benefitting from 3D-printed parts, including a tortoise shell and a dog leg. Builders have even constructed entire buildings using a 3D printer. The technology and use of 3D printers depend on the ability to understand the language of algebra. Engineers must be able to translate observations and needs in the natural world to complex mathematical commands that can provide directions to a printer. In this chapter, you will review the language of algebra and take your first steps toward working with algebraic concepts.
Use the Language of Algebra
Learning Objectives
By the end of this section, you will be able to:
Find factors, prime factorizations, and least common multiples
Use variables and algebraic symbols
Simplify expressions using the order of operations
Evaluate an expression
Identify and combine like terms
Translate an English phrase to an algebraic expression
This chapter is intended to be a brief review of concepts that will be needed in an Intermediate Algebra course. A more thorough introduction to the topics covered in this chapter can be found in the Elementary Algebra 2e chapter, Foundations.
Algebra is one of the broad areas of mathematics. Roughly speaking, algebra is the study of mathematical symbols and the rules for manipulating these symbols in formulas; it is a unifying thread of almost all of mathematics.
Elementary algebra deals with the manipulation of variables as if they were numbers (see the image), and is therefore essential in all applications of mathematics. Abstract algebra is the name given in education to the study of algebraic structures such as groups, rings, and fields. Linear algebra, which deals with linear equations and linear mappings, is used for modern presentations of geometry, and has many practical applications (in weather forecasting, for example). There are many areas of mathematics that belong to algebra, some having “algebra” in their name, such as commutative algebra and some not, such as Galois theory.
The word algebra is not only used for naming an area of mathematics and some subareas; it is also used for naming some sorts of algebraic structures, such as an algebra over a field, commonly called an algebra. Sometimes, the same phrase is used for a subarea and its main algebraic structures; for example, Boolean algebra and a Boolean algebra. A mathematician specialized in algebra is called an algebraist.